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This paper presents expressions for the evaluation of the second- and third-order 
Chapman-Cowling approximation to the thermal conductivity of a multicompo- 
nent monatomic gas mixture in the limit of zero density. Calculation of these 
higher-order corrections have been carried out for some monatomic gas mixtures. 
The higher-order corrections contribute as much as 3% to the thermal conductivity 
of binary mixtures of gases with a large mass ratio. It is found {hat the 
higher-order kinetic theory formulae provide an adequate description of recent 
thermal conductivity data that have an associated uncertainty of _+0.2%. The 
results of this analysis are employed to demonstrate that these thermal conductiv- 
ity data are entirely consistent with earlier viscosity data on the same systems. 

KEY WORDS: gas mixtures; kinetic theory; thermal conductivity; transport 
theory. 

1. I N T R O D U C T I O N  

Recent  developments in the measurement  of the thermal  conductivity of 
fluids have made it possible to determine the thermal  conductivi ty of dilute 
gases and gas mixtures with an associated uncer ta in ty  of _+0.2% [1-3].  A 
prerequisite for the interpretat ion of such data is a kinetic theory expression 

for the thermal  conductivi ty of the gas or gas mixture  that  relates the 
t ransport  property to intermolecular  pair  potential  energy functions, and 
which is at least as accurate  as the experimental  results. In the case of pure 
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monatomic gases, such a relation has been available for a considerable time 
[4]. However, in the case of binary and multicomponent mixtures, no explicit 
formulae of equivalent accuracy are available. First, this is a consequence of 
the relatively poor precision of earlier thermal conductivity measurements, 
which did not justify a formula of high accuracy. Second, it is a result of the 
sheer algebraic complexity of the problem. In order to avoid these algebraic 
difficulties, simple modifications have sometimes been applied to the lowest- 
order formula for the thermal conductivity [5] in an attempt to improve its 
accuracy [6, 7]. In a recent publication [3] it has been shown that the 
available kinetic theory formulae for the thermal conductivity are incapable 
of describing very accurate data, and so in this paper we obtain rigorous 
formulae for high-order approximations to this transport property for multi- 
component gas mixtures. We then employ them for the interpretation of the 
recent accurate experimental data. 

2. THEORETICAL BACKGROUND 

The thermal conductivity of a dilute gas mixture of u components in the 
stationary state, when all diffusion fluxes are zero, is denoted by ~ and may 
be written in the form [8] 

h= = ho - nk  ~ kriDr~ (1) 
i - I  

where k is Boltzmann's constant. Here, X0 is the thermal conductivity of the 
mixture when it is of uniform composition, the kri are the multicomponent 
thermal diffusion ratios for the mixtures, and the Drz are the multicomponent 
thermal diffusion coefficients. 3 The symbol n denotes the total number 
density of molecules in the gas. All experimental methods for the measure- 
ment of the thermal conductivity of a mixture, including the transient 
hot-wire technique, determine X= rather than ),0 [10]. Consequently, in order 
to develop a useful theoretical expression for the mixture thermal conductivi- 
ty, we must evaluate the individual transport coefficients ~0, kri, and Dry. 

Each of these transport coefficients can be written, at least implicitly, in 
terms of the coefficients of Sonine polynomial series expansions, which occur 
in the Chapman-Enskog solution of the Boltzmann equations [8]. These 
expansion coefficients are themselves determined from sets of linear algebraic 
equations derived from various integral relations that arise in the solution. An 

~The multicomponent thermal diffusion coefficients we employ here are those defined by 
Waldmann [9]. 
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exact solution for the transport coefficients can only be obtained if each of the 
Sonine polynomial expansions used in the Chapman-Enskog solution of the 
Boltzmann equation contains an infinite number of terms. Correspondingly, 
the required expansion coefficients are then to be obtained from the solution 
of an infinite set of linear algebraic equations. Chapman and Cowling [11] 
developed a scheme whereby successive approximations to the transport 
coefficients can be obtained by employing a finite Sonine polynomial expan- 
sion and a corresponding finite set of equations for the expansion coefficients. 
Thus, according to the Chapman-Cowling approximation scheme, an nth 
order approximation to the three transport coefficients of interest here can be 
derived from the equations [8] 

[Xo], = ~ k ~ at,~ (") 
i=l 

(2) 

! 

[DTi]. = -- ~n at'~ (3) 

and 

A t(n+l)  / ]  i (n+l)  
-j,o t.~TjJ, w., 

j = l  "= 

(i = 1 . . . . .  .1 

(4a) 

with 

~-f~kri = 0 ( 4 b )  
i~l  

Here ai,1 (n), a (") " dj 1 i(n) t,0 , dj,0 '("), and , are the coefficients of the Sonine polynom- 
ial expansions. The superscript (n) that is attached to each symbol indicates 
explicitly that the value of a particular coefficient depends upon the order of 
approximation and so upon the number of terms retained in the Sonine 
polynomial expansions. The symbol nt denotes the number density of mole- 
cules of species i in the mixture. 

The expansion coefficients at,q (n) are to be obtained from the set of 
equations [8] 

4 t'q . . . . .  

~-~ ~ AiJPqaj'q(')= 5-k ~n]  6pl (i = l, v (5a) 
j=l q=o p = 0 . . . . .  n) 
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with 

' ~  ( ~ )  a,,o(") = 0 forp  = 0 
i=1 

(5b) 

The c o e f f i c i e n t s  dj, q i(n) are obtained from the set of equations 

n - I  8 ( O,'] 6 (i = 1, 
~-~ Air q 4,q ~<") = 25k 6ik -- P ] p0 . . . .  

j=l q=0 p = 0  . . . . .  n -  1) 
(6a) 

with 

~-'~ ( ~ )  di.ok~") = 0 forp  = 0 (6b) 
i~l  

In these equations we have introduced the symbols p," for the mass density of 
species i, p for the total mass density of the gas mixture and, in addition, 6ij 
represents the Kronecker delta. The quantities A;f q are related to certain 
so-called bracket integrals [8]. They include all the information about the 
collision dynamics of pairwise molecular encounters. They therefore depend 
upon the intermolecular pair potentials and will be defined later. 

We note here that we have adopted the convention of Ferziger and 
Kaper [8] for the nomenclature of the various orders of approximation to the 
transport coefficients. Thus an nth order approximation to any transport 
coefficient is obtained by employing the appropriate value of n in Eqs. 
(2)-(6). This implies that the first-order approximation to any transport 
coefficient is the first nonvanishing approximation. 4 The nth order approxi- 
mation to the stationary state thermal conductivity ~ is, therefore, given by 
the expression [8] 

[X=]. = [ho].  - n k  ~ [kr,-]. [OTi]n (7)  
i=1 

Equations (2)-(7) together form a consistent scheme for the evaluation 
of the thermal conductivity [k=]n for a multicomponent mixture to any order 

4This convention is different from that employed by Muckenfuss and Curtiss [5], who defined the 
order of approximation as the number of terms occuring in the Sonine polynomial expansion. 
Thus, with the present nomenclature their expression for the thermal conductivity of a 
multicomponent mixture is a first-order approximation. 
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of approximation given only values for the quantities A/j pq. Indeed, the advent 
of high speed digital computers may make this implicit formulation the most 
convenient, since the sets of linear algebraic equations (4)-(6) can be readily 
solved numerically to yield ai,1 ("), ds,o ~("+~), ds,0 ~"+~ and [krj],,. We note that in 
order to evaluate [krj]n, it is necessary to determine dj,0 * and ds. / to the 
(n + 1)th order. There are some advantages to be gained from an explicit 
algebraic solution of the foregoing equations and these solutions are presented 
in the subsequent section. 

3. EXPLICIT FORMULAS 

A. First -Order A p p r o x i m a t i o n  

A consistent, first-order approximation for the thermal conductivity of a 
multicomponent gas mixture has already been given by Muckenfuss and 
Curtiss [5]. In this order the result is comparatively simple and may be 
written in terms of the single determinant ratio: 

[~'=]1 = - 

LII  I1 . . . . .  Llv 11 

L. 111 . . . . .  L. 11 

X 1 . . . . .  X u 

Xl / 
X~ 

0 

LI111 . . . . . . . .  Llv 1! 

Lv111 . . . . . . . .  Lw 11 
(8) 

Here we have employed a notation such that 

Lij 1E = Aij 11 (9) 

which we shall find useful for the higher-order approximations. 5 The elements 
Lij ~ are defined in terms of reduced collision integrals in the Appendix. 

B. T h e  nth  Order A p p r o x i m a t i o n  

In approximations of higher order than the first, the two terms of the 
right-hand side of Eq. (7) are not easily combined. Consequently, it is 
preferable to give general expressions for each of the individual transport 
coefficients [ko],, [DTi],, and [kri], for use in Eq. (7). Algebraic solutions of 

5The Li  pq  defined here are not those employed by Hirschfelder et al. [4] and Muckenfuss and 
Curtiss [5]. The two sets of quantities are related by the identity Lip  q = - 1/4 ( L i f q ) H c a .  



12 Assael, Wakeham, and Kestin 

Eqs. (4)-(6), when employed in Eqs. (2) and (3), yield the following results: 

[ X o ] .  = - 

L~176 I L~  L~ ,I . . . .  I L~ I 0 

~ _ ~  . . . .  [ _ A  x 

L 2~ ] t 2' I L221 . . . .  I L ~" I 0 

- - ~ -  1 -  ~ - - b -  ~ -  

"1  I I I [ 
I I 1 I I 

o~--~zn2~ ~ Iznn~-- 
L "  L"' . . . .  I I ~ 

-co ] x l o l . . . .  I o  I o  

D 
(10) 

where 

D = 

LOO I L o' I L~ I . . . .  I L on 
- 

LlO 1 Li2 ~ .  . . . ~ Lln 

I L 
z2Olz211L22 I . . . .  [L ~" 

- - 1 - - - ~ - - + - - - - d - -  
:~  r i i 

I I I I 
- 

In these determinants L pq represents the array 

(11) 

Ll l  pq LI2 pq . . . .  L l f  q 

L21 pq L22 pq . . . .  L 2 f  q 

Lpq ~_ (12) 

Lvl pq L~ pq . . . .  L ~ f  q 
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where in terms of the quantities Agf q 

L p q  = (1 - 6ij6pO6qO ) 

( i , j  = 

p , q =  

ai? q ~,'O~qO MjXj j~kii O0 ] 

1 , 2 , . . . v  

0,1 . . . n )  

(13) 

Here 6u represents the Kronecker 
species i. In addition, in Eq. (10), 
array 

delta, and Mi the molecular weight of 
X represents the horizontal or vertical 

X =  X l X z X 3  . . .  x ,  (14) 

where x~ is the mole fraction of the ith component in the mixture. The symbol 
O represents a horizontal or vertical array of v zeros. 

The multicomponent diffusion coefficients [ D r y ] ,  can be written in a 
similar notation as 

LO0 ~ L m I Lo2 

L 1~ [ Lll I L I2 

ILl 

�9 ~ ~ L O  n L 

I 
� 9  L In I 

ILl 
I I I I I 
I I I I I 
I I I I I 

0 

X 

0 

L~~ . . . I . . .  IL""tO 
--I---4 I - - - - I - - ~ - -  
a,-I O lO  . . - I - . .  I 0  iO 

2 
[Dr~], = 5kn (15) 

D 

Here, the symbol 6~ denotes the horizontal array of Kronecker deltas, 

6i = 6i16~2 . . . .  6i~ (16) 

The multicomponent thermal diffusion ratios [kT;]n are given by the equation 
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. . . .  Din  l(n+l) SI(n+l) 

. . . .  O2u 2(n+0 $2(n+l) 

[kri]. = - 

Dvl.(n+l) Dr2*'(n+l)  . . . .  D.:("+1) s.(n+I) 

6il 6i2 . . . .  6i~, 0 

Dill(n+l) D121(n+l) . . . .  DIv l(n+l) 

D212(n+U D222(n+0 . . . .  D2v 2(n+0 

(17) 

OulU(n+l) D~2~(n+l) . . . .  D . f  (n+l) 

In this equation the elements D,,,,t k~'+l) are defined by the relations 

D,,,,,, k~'+l) = 0  f o r m =  1 , 2 . . . u , k =  1 , 2 . . . v  

Dml k(n+l) = d~,o k(n+~) - dm,o k(n+l) l 4 = m, k = 1, 2 . . .  u 

l , m =  1 , 2 . . . u  

The quantities dt,o kC"+l) are themselves given by the equation 

t~176 l L~ l L~ . . . . . . . . . .  I z~ I Ak 

. . . . . . . . . . .  .' o 

25k 
d k(n+ 1) 1,0 

Z 20 I L 21 L22 I . . . . . . . . . .  

I I 
I I 
I I 
I I 

Z n2~ . . . . . . . . . .  

0 I . . . . . . . . . .  

LnO I LnI 

/,2.10 
I 

11 
I 
I 

o Io 

D 

( k , l =  1 ,2 . . . 1 : )  

(18) 

(19) 

(20) 
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where A k is a vertical array o f ,  elements: 

( k =  1 , 2 .  �9 .u)  (21) 

In addition, D is defined by Eq. (11) and 6t by the correspondence of (16). 
Finally, the elements S j~" § 1) of Eq. (17) are defined as 

L~176176 [L~ . . . . . .  [ L~ ,~j 

. . . . . .  

L z ~  = ' I L  2=1 . . . . . .  I L  2"1 o 
- - ~ - I - ~  I - - 5 -  

I I I I I 
I I I I I 
I I I I I 
I I I I I 

L"~ I L"' f L"2 I . . . . . .  IL""I 0 

0 I X l  0 I . . . . . .  I 0 1 0  
4 

SIC"+') = 5k (22) 

D 

in which X is defined by the relation (14). 
Equations (7) and (10)-(22) provide an explicit, consistent calculation 

scheme for the thermal conductivity of a dilute, multicomponent gas mixture 
of monatomic components of any order of approximation, which is readily 
coded for a digital computer once the elements L f  q are defined. Further 
reduction of these formulae is therefore unnecessary. 

3.1 The Elements Li pq 

The quantities Lij pq are defined by Eq. (13) in terms of the A_ij pq, which 
themselves are given by the general expression [8] 

A:q 8m":'m/2 { 
75 k2T 60 xixk [S3/z~P)(C2)C, S3/2r 

-}- XiX j [$3/2 (p) (C 2) C, $3/2 (q) (C 2) C]~jt 
J 

(23) 
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The terms in square brackets are the partial bracket integrals of kinetic 
theory defined in Ref. [8]. The symbol $3/2~P)(C 2) represents a Sonine 
polynomial of order p, while C is the reduced molecular velocity and C its 
magnitude. Because of the symmetry properties of the partial bracket 
integrals, the A~ff q satisfy the symmetry requirement [8] 

A~f q= ASp  ( i , j =  1 , 2 .  �9 . v; 
(24) 

p , q = O ,  1 �9 �9 . n )  

In addition, they satisfy the two further conditions [8], 

u v 

~-~ A~P~ = 0, ~--" Ao~ = 0 ( p , q = 0 , 1 . . . n ;  
~l i=l (25) 

j = l , 2 . . . v )  

It then follows from the definition of the quantities Li pq that they satisfy the 
conditions 

{•= q = 0 }  
L~f q = L S p  ( p , q = 0 , 1  �9 �9 . n ; i , j =  1 , 2 .  �9 . vexcep t  (26) 

" r  

~-'~ Lif ~ = 0, ~ Li j  Oq = O, 
i = 1  i - I  

( p , q = O ,  1 �9 �9 . n ; j =  1 , 2 [ .  �9 . v )  (27) 

Each of the partial bracket integrals of Eq. (23) can be reduced to a 
linear combination of the collision integrals characteristic of the interaction 
of species i and k according to the method described by Ferziger and Kaper 
[ 12]. Since we are ultimately interested here in the evaluation of the thermal 
conductivity to the third-order Chapman and Cowling approximation, it is 
necessary to evaluate the Li f  q as far as p = q = 3. Ferziger and Kaper have 
provided a tabulation of expressions for the partial bracket integrals up to and 
including p = q = 2 as linear combination of collision integrals [8]. Here we 
employ their results, together with new results generated according to their 
procedure for higher-order bracket integrals, to construct expressions for the 
Li f  q as far as p = q = 3. 

We have formulated the results in terms of the commonly employed 
reduced collision integrals fto(t")* for the interaction of species i and j defined 
by Hirschfelder et al. [4] and Ferziger and Kaper [8]. In addition, we have 
introduced a number of symbols for commonly occurring combinations of 
reduced collision integrals. Where there is an overlap with the results of 
Hirschfelder et al. [4] and Ferziger and Kaper [8] an identical notation for 
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these combinations has been adopted. The expressions for the Li  pq  a r e  

collected in the Appendix, and they show that, given reduced collision 
integrals characteristic of every pair interaction, the evaluation of the 
third-order approximation to the thermal conductivity of a multicomponent 
mixture is straightforward, if tedious. The reduced collision integrals them- 
selves may be calculated by standard techniques, given a knowledge of the 
various intermolecular pair potential energy functions. 

4. T H E  H I G H E R - O R D E R  A P P R O X I M A T I O N S  FOR BINARY 
M I X T U R E S  

In the case of pure monatomic gases, the nth order approximation to the 
thermal conductivity can be written in the form [4] 

[hi]  = [~ ' i ] l iX (n) ( 2 8 )  

where fx ~") is a factor that accounts for approximations higher than the first, 
and [)~;]~ is the first-order approximation given by eq. (A.24); see the 
Appendix. Within the Chapman and Cowling approximation scheme, fx ~"3 
takes the following forms for n = 2 and n = 3 

(L12) 2 
fx(2} = 1 + L1~LZ2 _ (L12)2 (29) 

fx ~ = fx ~2) + L "  (L12L 23 - L 22 L i 3 ) 2 / { [ L  li L 22 - (L12) 2] 

• [L ' lL22L 33 + 2L12L'SL 23 _ L'l(L23) 2 _ L 2 2 ( L I 3 )  2 _ L33(L12)2)} 
(30) 

Here we have omitted the subscripts from the L's since it is understood that 
they refer only to the single pure component i; that is, they can be derived 
from the L f  q of the Appendix by setting xi = 1 and xj = 0 (for j :# i). 

In the case of multicomponent mixtures of gases, it is not generally 
possible to write the higher-order approximations as perturbations upon the 
first-order result. However, in two special cases such a procedure is possible, 
and they provide a means of checking our algebraic results for the mixture 
thermal conductivity. In one case we have derived the third-order approxima- 
tion to the thermal conductivity of a mixture in the limit of one component 
mole fraction being unity. In the second case we have derived the third-order 
approximation to the thermal eonductivity of a mixture of a gas with itself. 
The results of both calculations for n = 2 and n = 3 are identical with those 
given by Eqs. (28), (29), and (30), as they should be. 

We can, of course, always define a function fmix ("), which relates the 
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first-order thermal conductivity of a mixture to the nth order approximation, 
by the equation 

[X~], = [X=],fm~x ~") (31) 

The algebraic difficulties mentioned earlier prevent us from writing down an 
explicit formulation for fmix ~"). Nevertheless, for specific systems, f mix ~n) can be 
evaluated numerically by computing the mixture thermal conductivity in the 
first-, second-, and third-order approximations according to the equations 
given here. In order to illustrate the magnitude of the effects of higher-order 
approximations, we have carried out such calculations for three representa- 
tive binary gaseous systems of monatomic species. 

We have chosen for our  examples the binary systems neon-argon, 
helium-argon, and helium-xenon. The mass ratios of the species in these three 
systems are 2, 10, and 33, respectively, so that they span the entire range of 
mass ratios for the monatomic species. In order to compute the reduced 
collision integrals for the various pair interactions we have employed an 
intermolecular pair potential determined from the functionals of the extended 
law of corresponding states [13, 14]; that is, we assume for the purposes of 
these sample calculations, that the intermolecular pair potentials for interac- 
tions among all the monatomic species can be rendered conformal by the 
choice of an energy scaling parameter ~,-j and a distance scaling parameter aij. 
It follows from this hypothesis that the reduced collision integrals f~C1.s), for all 
monatomic gas interactions are universal functions of the reduced tempera- 
ture (T* = kT/~0), and this has then been shown to be obeyed to a high degree 
of accuracy by the collision integrals ~2 i2'2)* and ~2 ~ determined from 
viscosity and diffusion coefficient measurements [13-15]. Boushehri et al. 
[16] have employed the universal correlation of the collision integral f222 
[13-15] tO obtain the universal intermolecular pair potential directly by 
means of the inversion procedure of Smith and coworkers [ 1 7, 1 8]. Maitland 
and Wakeham [19] have repeated this calculation and have shown that 
although there are deviations from conformality of the intermolecular pair 
potentials of the various pair interactions, these are generally small. Conse- 
quently, for the present purposes, the universal intermolecular potential 
energy function obtained in this w a y  provides a convenient and useful 
approximation to the true pair potential function for each interaction. 

Accordingly, we have employed the method of Smith and his coworkers 
[17, 18] to invert the universal functional ~22 of the extended law of 
corresponding states [13-15]. We have then computed from the inverted 
potential the collision integrals up to ~,~(4,4),, which are required for the 
third-order approximation to the mixture thermal conductivity with the aid of 
the algorithm of Barker et al. [20]. When combined with the scaling 



Thermal Conductivity of Monatomic Gas Mixtures 19 

parameters % and o- u of the extended law of corresponding states for each 
interaction [15], these collision integrals provide all that is required for the 
calculation of the mixture thermal conductivity up to the third order, and 
hence fr~ix (2) and fmix (3). In performing these calculations, we have confirmed 
that for a mixture of a gas with itself our computer program yields identically 
the correction factor fx (") for the pure gas independent of mole fraction, as it 
should. 

Figures 1-3 display the results of these calculations for the systems 
Ar-Ne, Ar-He, and Xe-He, respectively. We have plotted in these figures the 
correction factors fmix (2) and fmix (3) for several absolute temperatures as a 
function of the mixture composition. Taking the three figures together, it is 
clear that the magnitude of the correction factor for either order of approxi- 
mation increases as the mass ratio of the two species is increased. In the case 
of Ar-Ne, the second-order correction factor fmix (2) contributes as much as 
1.2% to the mixture thermal conductivity, and increases with temperature. 
This represents only a small enhancement of the correction factor for the pure 
gases. The inclusion of the third-order correction factor would increase the 
thermal conductivity of the mixture only by a further 0.1% at most, so that 
convergence is rapid. For experimental thermal conductivity data with an 
accuracy of _+0.2%, the second-order approximation is sufficient for argon- 
neon. 

For argon-helium the correction factors fm~x (2) and fm~x (3) show a 
pronounced maximum at all temperatures. In this case the second-order 
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Fig. 1. The higher-order correction factor for the 
thermal conductivity of mixtures of argon and neon. 
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Fig. 3. The higher-order correction factor for the 
thermal conductivity of mixtures of xenon and 
helium. 
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correction contributes as much as 2% to the thermal conductivity of the 
mixture, but only about 1% to the thermal conductivity of the pure gases. The 
third-order correction factor contributes a further 0.3% to the thermal 
conductivity, so that convergence for this system is less rapid than for 
argon-neon, owing to the higher mass ratio. A second-order approximation is 
therefore barely adequate for argon-helium. 

In the extreme case of xenon-helium, the higher-order correction factors 
for the mixtures decrease with increasing temperature, in contrast to the 
general behavior for the other systems. The second-order correction factor 
contributes as much as 2.6% to the mixture thermal conductivity, whereas the 
third-order correction adds a further 0.7% in the worst case. A third-order 
approximation is therefore essential for the description of the thermal 
conductivity of xenon-helium mixtures. 

5. APPLICATION TO EXPERIMENTAL DATA 

Measurements of the thermal conductivity of argon-neon and argon- 
helium mixtures in the limit of zero density at 27.5~ have recently been 
reported [3]. The experimental data have an accuracy of _+0.2%, and only for 
the argon-neon system could the results be adequately described by the 
first-order kinetic theory formulae. The earlier discussion indicates that this 
is, at least in part, because of the significant contribution to the mixture 
thermal conductivity from higher-order approximations. In this section we 
examine whether the same experimental data are consistent with the third- 
order kinetic theory formulae presented here. 

An ab initio calculation of the third-order approximation to the thermal 
conductivity of binary mixtures of argon-neon and argon-helium requires 
accurate intermolecular pair potential energy functions for each pair interac- 
tion. Although reasonable estimates for these potential energy functions are 
available [ 19], they would not necessarily reproduce exactly even the thermal 
conductivity of the pure components. Since we are primarily interested here 
in the composition dependence of the mixture thermal conductivity, we 
therefore adopt a procedure which automatically ensures that the experimen- 
tal pure component thermal conductivities are reproduced. 

We first identify the experimental thermal conductivity data for a 
mixture with the third-order Chapman-Cowling approximation to it. Subse- 
quently, we derive the first-order Chapman-Cowling approximation values 
from the experimental data by means of the equation 

[X~]I -- fmix(3) fmix (3) 
(32) 
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In the calculations we have employed the values of fmix (3) for each system 
generated by the procedure described earlier and based on the extended law 
of corresponding states. In the first-order approximation, the thermal conduc- 
tivity of a binary mixture depends only on the elements LIj 11, Ll2 tl, L22 ~1 
defined in the Appendix. Thus the only quantities, characteristic of the unlike 
interaction, which enter the expression for the thermal conductivity of the gas 
mixture are A*2, B ~'2, and [X~2]I, the "interaction" thermal conductivity [4]. 
Of these quantities, A*2 B*z are relatively insensitive to the nature of the 
unlike pair potential energy function and can be estimated from the correla- 
tions of the extended law of corresponding states [14, 16]. Furthermore, the 
first-order approximations to the pure component thermal conductivities [X1] 
and [X2]~ can be obtained from the experimental data through Eq. (31). 
Consequently, we may first use the experimental data for the mixture thermal 
conductivity at each composition for each system to obtain the interaction 
thermal conductivity [~1211. 

The results of such calculations, based on the experimental results of 
Ref. [3], are given in Table I. The definition of [X12]l given in Eq. (A.25) of 
the Appendix shows that it should be a composition independent quantity. For 
argon-neon, the mean value of the interaction thermal conductivity is 

[ ) k a r _ N e ] i  = 31.04 mW m - l K  -l (33) 

with a maximum deviation from the mean value of _+0.5%. When account is 
taken of the uncertainty in the experimental thermal conductivity data for the 

Table I. The Interaction Thermal Conductivity [•12]1 

Argon-Neon 

lXAexp, = [x~]3 [X.]l IX,2], 
)tAr (roW m t K-J) (mW m -l K -1) (mW m i K-I)  

0.0 49.45 48.92 
0.3675 33.81 33.46 30.97 
0.5276 28.78 28.52 30.96 

�9 0.7377 23.36 23.20 31.20 
1.0 17.74 17.70 

Argon-Helium 

0.0 155.9 154.3 
0.2238 95.26 93.64 72.00 
0.3453 74.95 73.51 72.65 
0.6403 41.04 40.24 71.00 
0.8105 28.80 28.35 72.65 
1.0 17.74 17.70 
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pure gases and the mixtures (_+0.2%), the overall uncertainty in the calcu- 
lated value of [X~211 for the system is estimated to be _+0.6%. Within the 
uncertainty bound then, the results for [X~211 are independent of composition, 
as they should be. 

For argon-helium the mean value of the interaction thermal conductivity 
is 

[ • a r -He ] l  = 72.08 mW m - l K  -1 (34) 

with a maximum deviation of 1.5%. For this system the uncertainty bound 
associated with the calculation of [X~2]~ is rather wider than for argon-neon. 
This is because of the large mass ratio of the two species, which renders the 
calculation of [X~2]~ more sensitive to the values employed for A*2 and B*2 as 
well as to the composition of the mixture compared with the argon-neon 
system. We have confirmed by direct calculation that an error of only 0.0005 
in the mole fraction of the mixture can contribute as much as _+0.5% to the 
uncertainty in the calculated value of [X~2]~. In addition, errors of _+0.2% in 
the collision integral ratios A*2 and B*2 each contribute _+0.2% to the error in 
[X~] ~. When account is taken of these uncertainties, together with the errors 
in the thermal conductivity data themselves, the overall uncertainty in the 
calculated value of [),~2]~ is estimated to be one of _+2%. Within this, 
somewhat larger, uncertainty bound the composition independence of [X~2]~ 
for this SYstem too is confirmed by the results of Table I. 

Using the mean values of [Xl2]~ given by Eqs. (33) and (34), we have 

3.0 

~.5 

8 
'< 0 

8 
I 

-1.5 

O 

0 
0 
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O 

025 0.50 0.75 1.00 
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Deviations of experimental thermal conductivity [3] from the Fig. 4. 
calculated values at 27.5~ e, Ar-Ne third-order approximation calcu- 
lation; O, Ar-He third-order approximation calculation; 0,  At-He 
first-order approximation calculation. 
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computed the third-order approximation to the mixture thermal conductivity 
of the two systems Ar-Ne and Ar-He. In these calculations we have again 
employed the correction factor - (3) ./mix and A*2 and B*2 computed from the 
extended law of corresponding states as well as the experimental pure gas 
thermal conductivities [2, 3]. Figure 4 contains a plot of the deviations of the 
experimental data for these systems from the calculated values. In the case of 
argon-neon the deviation does not exceed _+0.2%, which is commensurate 
with the experimental error. For argon-helium the maximum deviation in the 
thermal conductivity amounts to 0.9% for one mixture but is considerably 
lower for the remainder. For the purpose of comparison, Fig. 4 also contains 
the deviations of the experimental data from a first-order calculation of the 
mixture thermal conductivity for argon-helium. For this calculation the 
experimental pure gas thermal conductivities have again been employed, 
together with the interaction thermal conductivity of Eq. (34). Here the 
deviations amount to as much as 2.4%. Thus the need for an approximation of 
higher order than the first in order to calculate adequately the thermal 
conductivity of binary mixtures with a large mass ratio is emphasized. 

6. THE EUCKEN FACTOR 

It is a result of the kinetic theory of gases that the interaction thermal 
conductivity [~211 and the corresponding quantity for viscosity [u~2]~ are 
related by the generalized Eucken equation [8, 21], 

[X12]I 8MIM2 
Eu12 = [~ti2]~ 15R(MI + M2) 

= 1 ( 3 5 )  

The present results, together with earlier viscosity data for argon-neon 
and argon-helium, afford the opportunity to assess the consistency of the two 
sets of experimental data. We have, therefore, employed the viscosity data of 
Refs. [22] and [23] to deduce the interaction viscosity of Ar-Ne and Ar-He at 
27.5~ For this purpose we have employed the second-order analysis 
described by Kestin et al. [ 15]. The mean values of the interaction viscosity 
obtained in this way are 

[ ~ A r - N e ] l  = 26.56 +_ 0.2 #Pa s (36) 

and 

[ ~ A r - H e ] l  = 16.19 _+ 0.3/zPa s (37) 

In the case of argon-neon the uncertainty in the interaction viscosity is 
estimated to be one of _+ 1%, whereas for argon-helium the uncertainty is 



Thermal Conductivity of Monatomic Gas Mixtures 25 

somewhat higher at about 2% for reasons similar to those cited for the 
thermal conductivity above. 

When these values for the interaction viscosity are combined with the 
values for [),~2]~ given in Eqs. (32) and (33), we obtain the following results 
for the Eucken factors: 

EUAr.Ne = 1.004 _+ 0.016 (38) 

EUAr.He = 1.04 _+ 0.04 (39) 

Thus for argon-neon and argon-helium we confirm the consistency of the 
viscosity and thermal conductivity of binary mixtures within the limits of 
experimental error. It is worthwhile pointing out here that the uncertainty 
bounds associated with the Eucken factors for the unlike interactions are 
unavoidably larger than those characteristic of pure gases. This is because, 
even when experimental data with an accuracy of _+0.2% are employed in a 
third-order approximation analysis, the determination of both [)~2]1 and 
[~q2]~ from experimental data is necessarily deficient and subject to large 
uncertainties. 

7. CONCLUSIONS 

Second- and third-order Chapman-Cowling approximations to the ther- 
mal conductivity of a multicomponent mixture of monatomic gases have been 
derived. It has been shown that for gas mixtures containing species with a 
large mass ratio, the convergence of the theoretical expressions is slow. A 
third-order approximation to the thermal conductivity is essential for an 
accurate calculation for mass ratios exceeding about 10. With the aid of the 
equations developed here it has been possible to demonstrate the consistency 
of accurate viscosity and thermal conductivity measurements on binary 
mixtures. 

A computer program for the evaluation of the higher-order correction 
factors for the thermal conductivity of gas mixtures, according to the scheme 
outlined here, can be obtained by writing to one of the authors (W.A.W.) of 
this paper. 

A PPENDIX 

Expressions for the elements Lij pq, required for the calculation of the 
third-order approximation to the thermal conductivity of a multicomponent 
mixture of monatomic gases are listed below. 

Lii ~176 = 0 ( A .  1) 
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-x~x~ ~-- x~x,M~ Lij o~ 
2A*[h;j], r 2M,.A~[X~,], 

kv~i 

(i ~ j) (A.2) 

v 
5- x_,x, M~ 

L"~ = ~ 4A~[X,k], (M~ + MD 
k~i 

= Lii I0 

(6C* - 5) (A.3) 

(A.4) 

x, xjM~ ( 6 C * -  S) (i v~ j) 
Lq~ = 4A*[X~],(M~ + Mj) 

Lji 10 

(A.5) 

(A.6) 

Xi2 ~ Xi Xk 

(A.7) 

Lij = 2A~[Xij],(Mi + Mj)2 

= tr i  II 

(A.8) 

= ~-~ xexkMk 2 ~/35 } 
L'~ ~4A~[~,,kl~(M, + Mk) [4 - 3B~ - 6C~ 

= Lf  ~ 

(A.9) 

x~xjM~2 {~ - 3B* - 6C*} 
L,~ ~ = _ 4A.[Xo])(M~ + Mj) z 

L fi 20 

(i v~ j) 
(A.IO) 
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Lii 12 
xi217  - 8 E * I  " " M~xix~ 

-4-~,~ + ~ 2[X~k]IA~(Mi + Mk) 3 k~l 
k~i 

+ 7 - ~ , - T  B*- 

+ 2MiMk(7  - 8Eik)Aik 

= Lii 21 

(A.11) 

Lij 12 = _ 
M?Mjx, xj 

2[a~jl~A*(M, + Mj) 3 

• - -  + g C * -  B * -  3 0 G * -  2(7 - 8 E * ) A *  (A.12) 

(i v e j)  

= Lji 21 

x7 [77 ] 
L, = l~,.], ~ - 7E,* + 5H,* 

~ .  Xi Xk 
+ k=~ 2[X~k]lA*(M~ + Mk) 4 

kr 

x - - M ,  4 + Mk4~ 64 + ~ - - C ~  - --'~- B* (A.13) 

+ 2 8 M g M k A *  + M~Mk3(49 - l12E* + 80Ho)A~k 

xix jMi2Mj 2 [8505 558 , 723 B* 
Lq 22= - 2[Xv]~A.(M ~ + Mj)4  ( - ~ - -  + - ~ -  Cij - --i f-  ij -- 210G~ 

+ 9 0 1 " + 2 4 F * -  ( 7 7 -  l l2E~+80H*)A;*  I ( i ~ j )  
) 

(A.14) 
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XiXkMk 3 1315 81 27 , } 
Lii ~ = s 2[Xik],A~(Mi + Mk)3 [ 48 + -~- Ci*k - --~- B~k -- 10G~ 

k:~ i 

= Z i i  30 

(A.15) 

x~xjM? 
G o3 = 2[XiA~A~(M i + Mj )  ~ 

{~85 81 27 i*} x + -~- C* - ~ ei* - 10G 

Z j i  30 

(i ~ j) 
(A.16) 

L i i  13 = -  x, 2 {6_~_~_18E,~+ lOHi~} 
4 [~'i]  1 

+ s XixkMk2 
k=, 2[X~k]lA~(Mi + M~) 4 
kg:i  

x + ~ C~  - ~ - B *  - 160G~ + 6 0 I ~  Mk 2 

(945 243 C* 81 , \  
+ ~ 16 + -4-  i~,- -~Bik)Mi 2 

+(6---~-72E~+40Hi*)Ai*MiMk} 

= L i i  31 

(A.17) 

xixjM?Mj 
Lij~3 = - 2[Xij]IA*(Mi + Mj) 4 

/2415 333 243 160G* + 601" 
•  32 + - - 4 - C * - - - 4  - B * -  

- (63 - 72E* + 40H*)A*} (i -~ j) 

L j i  31 

(A.18) 
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] x,) [945 261 E* + Hi* -  30J,* 
L"2~ 4[L11 [-~ 4 T 

~ - ~ X ,  x k M k { ( 5 7 5 9 4 5 )  
+ 2[X,k],A~(Mi + Mk) 5 Mi' 1 C~ k=l 16 8 

k r  

[3675 28035 1953 
+Mk4[128 + - - ~ C , I . - - - - ~ B , ~  

1505 
2 

G,* + 615I,* - 2~_0K~] 

[6615 8343 2025 
+ M'~Mk2 [ 32 + - ~ -  C* -- - -  B i* k 

- 495G~ + 108F~ - 120Q~] 

+ M,3Mk[126 - 144E~]A*} 

= Li i  32 

(A.19) 

Lij 23 x,xj M? M/ 
2[a~],A*(M, + Mj) ~ 

• 
42735 53847 6003 

+ - - ~ C *  16 B*+  108F*-  120Q* 

2495 
2 G*+ 6 1 5 I * - 2 1 0 K *  

t j i  32 

(i v e j)  

(A.20) 
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Lii 33 

+ 

+ 

+ 

+ 

+ 

+ 

LO 33 = -- 

xi 2 [14553 1215 1865 H* 
4[X,]~ [ 256 ~ -  g,-*+ - -  .. 

105 ] 
- 135J,,*. + ~ - - S *  + 4U* 

XiXk 

+ 2[X,k]lA~k(M,* + Mk) 6 k = l  

k4-i 

{ [ ~  25515 52731B 4515 
• Mk 6 § ~ C~k 1 9 ~  - G ,I 

5535 , ] 
+ ~ - l ; k  - 1890K* + 560V* + Mi66615144 

+ Mi2Mk4117~_~405__ + ~13851 Ci* 18225 B * I ~  

- 4455G* + 17551* ' 

486F~k -- 10800* + 720W*] 
J 

[14175 1485 B~ + 180F*] Mi4Mk2 [ 32 135C~ - - - f f -  

M~3Mk 3 [567 - 1296E~ + 880H~ + 64U~k]A; k 

M;SMk189 A~ + MiMk 5 [3969 _ 1134E~ 
2 [ 16 

2250H~ - 2160J* + 840S*] 
,I 

180Mi4Mk2F *} 

xixjMi3Mj 3 t252__~655 35127 102357 
2[Xu]IA*(Mi + Mj)6 t - -  + ~ C* 64 

13425 9045 
2 G* + T I* - 1890K* + 666F* - 10800* 

+ 490V* + 7 2 0 W * -  ( 14553 2430E,~ + 3130H* 

- 2160J* + 8 4 0 S * -  64U~j)A o (i r j )  

Zfi 33 

m B *  

(A.21) 

(A.22) 
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In these expressions we have employed the following definitions of 
collision integral ratios 

~(2,2):# 
Ai~- Q(1,1), B*  ~ [5~ij (1'2)* -- 4~'~ij(l'3)*]/~ij(l'l)* 

~'~ij( 1,2), ~/j(2,3), 

C * -  ~2ij(1,1), E * -  ~20(2,2) , 

Q(3,3), ~,~t (1,4)* 
F * -  fl(l,~), G* = fl(~,l)------~ 

H f f -  ~(2,2), ] ~ -  ~(1,1), 

(A.23) 

~-~ij( 2,5 ) * ~'~l~j (1,6) :g 
J ~  -- ~ij(2,2)~g K ~  = ~ij(l,1)~g 

~ij(3,4) :g ~ij(2,6)* 
Q* = ~,~ij(l,l), S ~ -  ~-~ij(2,2):g 

~,~ij(4,4) :t: ~,-~ij( 1,7), 
U* - ft~)2,2) , V* - ~2~)LI), 

~-~ij(3,5 ) * 

W* = ~o(1,~), 

In addition, we have used the first approximation to the thermal  conductivity 
of pure gas i: 

75 (NA" k r/l/  1 (A.24) 

as well as the so-called interaction thermal  conductivity 

75 (NA k3T(Mi + Mfl.) ~/2 1 
[Xij]I = 6"4 2rcMiMj aij2~,~ (2'2)* (A.25) 

where NA is Avogadro's  constant. 
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